机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉。
在反恐排爆类装备的研发中,通过走访公安一线,发现目前公安领域多数排爆机器人只是采用摄像头作为排爆取证的工具,并有将摄像头采集的图像数据作为一种排爆目标识别的手段。
机器视觉技术目前已经广泛应用在机器人自主导航、机器人手眼一体伺服控制等领域中。但是在公安排爆机器人领域,机器视觉技术应用较少。多数排爆任务需要公安干警近距离进行勘察,而人的主观判断往往受制于经验和生活中积累常识的影响,会出现不客观的错误判断。利用机器视觉系统采集的信息,能自主的分辨不同颜色、形状、深度的排爆目标,同时将采集的图像与常用爆炸物专家库中的信息进行比对,客观地反应目标是否为爆炸物并给出判断结果。
机器人视觉技术的研究,最初源于1967年初美国斯坦福大学W.Wichman等人在一个机器人人工智能项目中,提出机器人以获得的视觉光流作为视觉反馈控制的输入信息,进行机器人的闭环位置控制。
他的思想被认为是机器人视觉技术的最初雏形,然而该研究项目在当时并未得到足够的重视,主要原因是在当时视觉采集和图像处理系统设备相当昂贵且并未成熟。直至1973年,当时为日本大阪大学教授的Y.Shirai在美国麻省理工学院人工智能实验室作访问学者期间,与实验室其他学者共同建立了机器人视觉控制方法的实验研究模型,并首次较成熟地提出了视觉控制方法的研究模型。但还是由于计算机图像采集设备和图像处理技术的限制,并未带动机器人研究学者对视觉控制方法研究的热潮。
进入 90 年代以后,特别是随着计算机图像采集设备、图像处理技术和机器人控制技术的革新和发展,机器人视觉控制算法获得了更深入的关注和研究。以B.Espiau等人于1992年提出的机器人视觉控制算法为起点,机器人视觉控制算法的研究又一次受到了极大的关注。
我国在机器视觉的研究方面起步较晚,国防科技大学、哈尔滨工业大学是国内研究机器视觉起步较早的单位。近年来,清华大学、上海交通大学、上海大学、中科院沈阳自动化所等都在开展这方面的研究,并已取得阶段性的成果。从作业任务来看,到目前为止,在工业机器人领域,机器人视觉技术已有了许多成功的应用例子,如装配、焊接、搬运、邮件分检,轨线跟踪等。在警用排爆机器人的爆炸物处置的领域,应用尚比较少。